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Abstract 
 

Shadow detection and removal in real scene images 
is always a challenging but yet intriguing problem. In 
contrast with the rapidly expanding and continuous 
interests on this area, it is always hard to provide a 
robust system to eliminate shadows in static images. 
This paper aimed to give a comprehensive method to 
remove both vague and hard shadows from a single 
image. First, classification is applied to the derivatives 
of the input image to separate the vague shadows. 
Then, color invariant is exploited to distinguish the 
hard shadow edges from the material edges. Next, we 
derive the illumination image via solving the standard 
Poisson equation. Finally, we got the shadow-free 
reflectance image. Experimental results showed that 
our method can robustly remove both vague and hard 
shadows appearing in the real scene images. 
 
1. Introduction 
 

Shadows in images have long been disruptive to 
computer vision algorithms. They appear as surface 
features, when in fact they are caused by the 
interaction between light and objects. This may lead to 
problems in scene understanding, object segmentation, 
tracking and recognition. Because of the undesirable 
effects of shadows on image analysis, much attention 
was paid to the area of shadow removal over the past 
decades and covered many specific applications such 
as traffic surveillance, face recognition, image 
segmentation and so on [1, 2, 3]. In spite of these 
extensive studies, however, it is difficult to develop a 
fully automatic, general-purpose shadow removal 
system in that shadows and shadings vary from scene 
to scene and different kinds of shadows may have 
different physical properties. 

A shadow occurs when an object partially or totally 
occludes direct light from a source of illumination. 
Shadows can be divided into two sets: self shadows 
and cast shadows. A self shadow occurs in the portion 

 
Figure 1. Block diagram for shadow removal system. 

 
of an object whereas a cast shadow is the dark area 
projected by the object. Cast shadows can be further 
classified into umbra and penumbra region, which is a 
result of multi-lighting. One crucial difference between 
these shadows is their contrast to the background. 
Usually, self shadows are vague shadows which 
gradually change intensity and have no clear 
boundaries. Cast shadows are, on the other hand, hard 
shadows with sharp shadow boundaries. 

In this paper, we proposed a method to remove both 
vague and hard shadows from a single image. Block 
diagram of our system is shown in Figure 1. First, we 
converse the input image to the logarithmic domain 
referring to the sensitivity of human vision system. 
Then, we estimate both vague and hard shadow edges 
on the gradient map of the input. Vague shadow edge 
estimation is based on the assumption that vague 
shadow varies slowly across an image whereas changes 
in materials are rapid. Hard shadow edge detection is 
conducted based on the color invariant properties. 
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After both shadow edges are obtained, we combined 
them and reconstruct the shadow image via solving a 
Poisson equation. At last, a shadow free reflectance 
image is derived by extracting the shadow image from 
the input image. Final shadow and shadow-free images 
are obtained by exponentiating the logarithmic results. 
Experimental results showed that our shadow removal 
system is robust for real scene images consisting both 
vague and hard shadows of any type. 

The rest of the paper is organized as follows: 
Section 2 reviews related work on this topic. Section 3 
introduces the shadow removal system. Section 4 gives 
experimental results and discussion. Section 5 
concludes the paper.  
 
2. Related Work 
 

E.H. Land and his colleagues proposed a model, 
namely Retinex, to separate illumination from 
reflectance in a given image [4, 5]. Since the 
illumination images represent the distribution of the 
lighting and shading, separating it from reflectance is 
useful to cancel out the effect of shadows. Land’s 
methods could only remove the vague shadows in 
image since they were based on the following 
assumptions: 

a. Mondrian world model. 
b. Spatially smooth illumination. 
c. Lambertian surfaces. 
Lambertian surfaces assumption is forcing that there 

is no specular reflectance in image. The Mondrian 
world and smooth illumination assumptions assume 
that there is a generally clear signal at each of the 
boundaries between objects whereas there are no sharp 
boundaries between shadows and background. Similar 
work on vague shadow removal can be also found in [6, 
7] where authors directly utilize a low-pass filter to 
separate the illumination images. 

Recently, Y. Weiss [8] proposed a system to 
remove shadows from image sequences and Matsushita 
et al. [9] extended his work. Their methods also based 
on a decomposition of images into reflectance and 
illumination. They used an ML estimation to derive the 
time-invariant reflectance image from the sequences. 
Since they make a more generic assumption instead of 
the Mondrian world and smooth illumination, their 
method could remove cast shadows as well as vague 
shadows. However, the system has limitations for that 
it could only remove moving shadows in image 
sequences. 

Tappen et al. [10] exploit Weiss’s reintegrate 
method to derive the shadow free image from a single 
input. They trained the classifier to identify shadow 
edges and propagate the local evidence. The rational 

behind the trained classifier is just the spatially smooth 
illumination assumption and hence the method could 
only remove vague shadows (shadings on the object). 

More recently, Finlayson et al. made a great step in 
removing cast shadows from single images [11]. They 
derive scene texture edges from a light-invariant image 
and by subtracting those edges from the raw input; 
they obtain a shadow free color image. However, 
Finlayson’s method could only remove hard shadows 
from scenes lit by the Planckian light. 
 
3. Shadow Removal  
 

Generally, this work is also based on decomposing 
input images into reflectance image R and the shadow 
image S (also named illumination image). The raw 
input image I is the pixel-wise multiplication of the 
reflectance and shadow, i.e. I = R·S. A first step in our 
work is to converse the raw input into the logarithmic 
domain: i=log I, s=log S, r=log R, and thereby i=s+r. 
Then, we estimate the shadow image s via combining 
vague shadow estimation and hard shadow estimation. 
Before going into the detailed algorithms, we review 
the assumptions: in our algorithm, we still take the 
prior that the surfaces are Lambertian and scenes are 
Mondrian. But we eliminated the assumption of the 
smooth illumination since we deal with vague and hard 
shadow independently and each of them has different 
physical properties. 
 
3.1. Vague shadow estimation 
 

Vague shadow refers to the shadows or shadings in 
images which have no clear boundaries and gradually 
changed intensity. In real scenes, self shadows and 
shadings usually have smooth changes and can be 
classified as vague shadow. However, even in the cast 
shadow regions, we can separate the gradually changed 
components. For instance, the penumbra regions of the 
cast shadows are more likely to be vague shadow 
components. 

Unlike the Land’s work on illumination removal [4], 
our approach works in the gradient space rather than 
intensity space. It is mainly because that it is easier to 
combine the vague and hard shadow removal in the 
gradient domain. Therefore, we first transfer the raw 
logarithmic image into gradient domain: 

( , ) ( , )k kG x y i x y= ∇                                              (1) 
where ik(x,y) represents the logarithmic image, k 
denotes the kth color channel: k = 1,2,3 and Gk is the 
gradient response. Since vague shadows are expected 
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            (a)                             (b)                             (c)             
Figure 2. (a) Logvinenko cubes pattern. (b) Vague 
shadow estimation. (c) Recovered shadow free image. 
 
to be spatially smooth, we clip out the high derivative 
peaks corresponding to the object boundaries and 
obtain the vague shadow mask. To determine the 
clipping threshold, the following criteria is applied: 

,
max{max{ ( , )}}kk x y

T G x yα=                                      (2) 

where α is a predetermined value and T represents a 
threshold. After deriving threshold T, we could do the 
following clipping operation to obtain a binary vague 
shadow mask for further process: 

1 max( ( , ))
( , )

0
kk

if G x y T
VS x y

otherwise

<= 


              (3) 

The VS(x,y) is the binary mask. It could either be 
applied directly to the derivatives to remove the vague 
shadows in image or be combined with the hard 
shadow mask to perform the full shadow removal task. 
Figure 2 is an example of only applying vague shadow 
removal to an image: (a) is the Logvinenko cubes 
pattern from [5]: the image is covered with vertical 
sinusoidal illumination; (b) is the reconstructed vague 
shadow image deriving from applying the shadow 
mask to the derivatives (Details of reconstructing 
image from derivatives would be discussed in Section 
3.3); (c) is the recovered shadow free image using (b). 
Note that the shadings on the image are totally gone 
whereas the object details are preserved in the shadow 
free image. 
 
3.2. Hard shadow estimation 
 

The vague shadow removal process described in 
the former subsection could be used to eliminate 
shadows with diffuse boundaries. The rational behind 
it is the assumption that the scene objects correspond 
to the sharp details in the image whereas the vague 
shadow image is expected to be spatially smooth. 
However, in many outdoor scenes, this may in fact not 
be the case at all. Cast shadows in the sunlight always 
have clear boundaries and similar response to the 
reflectance change in the edge image. To distinguish 
between edges due to shadows and those due to 
material changes, a priori information about the scenes 
and shadows is needed. 

  
                  (a)                                         (b)                     
Figure 3. (a) Original image with cast shadows. (b) 
Color invariant image of (a). 
 

Two kinds of models are exploited in our case to 
capture the color invariant of the inputs based on the 
observation that shadows in scenes mainly change the 
intensity of the surfaces and seldom change the 
chromaticity. 

The first model is similar to the normalized rgb 
triangle but only take the l2-norm as the normalized 
factor: 

2 2 2

rr
r g b

′ =
+ +

                                                (4) 

2 2 2

gg
r g b

′ =
+ +

                                                (5) 

2 2 2

bb
r g b

′ =
+ +

                                                (6) 

where r,g,b is the three color channels of the input 
image, r’,b’,g’ is the three-band color invariant image 
which do not contain the shadows. One example of the 
color invariant map is shown in Figure 3: (a) is the 
original image with cast shadow on a planer surface. (b) 
is the result image applying equation (3-5) to the 
original input. Note that shadows are not spotted in the 
color invariant map. 

The second model is based on the method proposed 
by G.D. Finlayson et al. [11]. They observed that same 
colors in an image lie on lines with same slope in the 
log-chromaticity space in spite of the lighting 
condition. By projecting the colors in the 2d log-
chromaticity space onto the direction orthogonal to the 
lighting direction, we could get a 1d invariant image. 
Finlayson’s method could be rewritten as follows: 

cos( ) ln( ) sin( ) ln( )r binv
g g

θ θ= ⋅ + ⋅                          (7) 

where θ is the projecting direction, inv is the 1d 
shadow free invariant image. 

In our system, we add an exponent operator to the 
invariant image to get more “pleasing-looking” images. 
The crucial parameter of this model is the projecting 
direction θ, Finlayson et al. use a set of pictures taken 
at same scene under different illumination to perform 
the calibration. They also point out that different 
cameras would have different projection directions.  
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                  (a)                                         (b)                     
Figure 4. (a) Original scene image with cast shadows 
from internet. (b) 1-d invariant image of (a). 
 
However, to get such an image set for calibration is not 
an easy job, especially the images are obtained from 
the internet. Our experiments showed that although the 
projecting direction varies from cameras, it only varies 
a little. Therefore, we could use an approximate 
direction to derive an approximate invariant image. 
Figure 4 shows the result of Finlayson’s method with 
an exponent operation. Figure 4 (a) is a scene image 
with shadows obtained from the internet; (b) is the 1-d 
shadow free invariant image of (a). 

Both of the two models we used here are designed 
to capture the invariant characteristics of the scene 
using the color information. They can compensate each 
other in some cases owing to their different realization 
of the invariance. 

Using the invariant image, hard shadow edge mask 
could be estimated by comparing the raw input and the 
invariant image. First, a Gaussian smooth filter is 
applied to both original image and invariant images. 
This has the effect to depress the high frequency 
textures in image. For color images (the smoothed 
input and the smoothed color invariant image), a 
transfer to gray scale is conducted by taking the 
maximum value of three color bands, which is just the 
definition of Value in the HSV color model. Then, 
edge detection is performed to both of the smoothed 
images: 

( )ori oriE edge I= , 
( ) ( )( )inv i inv iE edge I=                 (8) 

where i is the index of the invariant images, here i = 
1,2. The hard shadow edge mask could be derived by 
pick out the strong edges which appear in the original 
images but not in the invariant images: 

( )

1 ( , ) 1&
min ( ( , ) 2)( , )

0

ori

inv ii

E x y t
E x y tHS x y

otherwise

>
 <= 



            (9) 

where t1, t2 is the manually set thresholds and HS(x,y) 
is the estimated hard shadow edge mask. In equation 
(9), the parameter t1 forces the selected shadow edges 
to be strong edges corresponding to the hard shadows 
in images and parameter t2 picks out edges only 
belong to shadows. Unlike Finlayson’s method, our  

  
                  (a)                                         (b)                     

  
                  (c)                                         (d)                     
Figure 5. (a) Input image from internet. (b) Hard 
shadow mask. (c) Reintegrated shadow mask. (d) 
Recovered shadow free image. 
 
system need no further dilation for shadow edge image 
since our edge detector is applied to the smoothed 
image, and hence the shadow edges is complete 
enough. Moreover, the morphological dilation operator 
would introduce extra material edges into shadow 
mask. Figure 5 depicts the results of hard shadow edge 
estimation: the hard shadow edge mask of (a) is shown 
in (b) and (c) is the reintegrated shadow image from 
combining the vague and hard shadow mask. (d) is our 
recovered shadow-free result. 
 
3.3. Reconstruction 
 

Image reconstruction from gradient information is 
an approximate inverse problem. Weiss [8] proposed a 
pseudo inverse function to recover the original image. 
In our case, we adopt the Poisson equation solution [6] 
method to reintegrate the shadow images from the 
derivatives. 

We begin by combining the two kinds of shadow 
edge masks: 

|mask VS HS=                                                    (10) 
Then, apply mask to the gradient field: 

( , )x yi mask i mask G mask G′∇ = ⋅∇ = ⋅ ⋅                 (11) 
We denote the clipped derivatives as Gx’ and Gy’ and 
calculated the following scalar: 

yx GGdivG
x y

′∂′∂
= +

∂ ∂
                                              (12) 

Finally, the shadow image could be reconstructed by 
solving the following well-known Poisson equation: 

2s divG∇ =                                                          (13) 
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where s is the estimated shadow image. Since the 
process is done in logarithmic domain, we should add 
exponent operation to the image: 

,
( , ) exp( ( , ) max( ( , )))

x y
S x y s x y s x y= −                    (14) 

Extracting shadows from original image: 
( , ) ( , ) ( , )r x y i x y s x y= −                                      (15) 

,
( , ) exp( ( , ) max( ( , )))

x y
R x y r x y r x y= −                   (16) 

where S is the reconstructed shadow image and R is the 
reconstructed shadow free image. Figure 5 (c) is 
corresponding to the S and (d) is corresponding to R in 
equation (14)(16), respectively. 
 
4. Discussion and Results  
 

As deriving a shadow-free image form image 
sequences has made a great progress, recovering it 
from a single image remains a difficult problem. It is 
mainly because the motion information which could 
help to distinguish between shadows and reflectance 
becomes useless in a still image. In our method, we 
begin at estimating shadow edge masks for both vague 
and hard shadows. In current implementation, the 
parameter α for vague shadow clipping operation is set 
to be 0.06. The projecting direction θ for invariant 
image estimation is chosen to be 43.58○ based on a 
series tests on an arbitrary test set. We chose values of 
t1=0.4 and t2=0.1 after the edge magnitudes have been 
scaled to a range [0, 1] based on the Finlayson’s work.  

Our system is robust for shadow removal under 
different environments. Figure 6 gives more examples. 
The first column is the input; both outdoor and indoor 
environments are included. Note that all of them come 
from different cameras. The second column is the 
reconstructed shadow images; textures of the scene are 
not included in the shadow images. The last column is 
the recovered shadow free images; most of vague and 
hard shadows are removed in these results. 

Currently, we developed a demonstration on a 
1.8GHz PC using Matlab 6.5. The size of the test data 
we used in our experiments is 640×480. For all the 
test images, the average running time is 5.62 seconds. 
As a comparison, the standard implementation of 
McCann Retinex [5] with four iterations takes more 
than 9 seconds for each image on our PCs. 

Experimental results showed that our method is 
effective in removing shadows in images. However, 
there are some artifacts in the image boundaries since 
we simply use the Neumann boundary condition for 
Poisson equation, i.e. we set the derivative in the 
direction normal to the boundary to zero. A better 
alternative is to pad the original image with the 
mirrored image. 

Future work includes the further improvement of 
estimating shadow edges and reconstructing image 
from gradients. A more challenging task for us is to 
remove hard shadows from a gray scale image. 
 
5. Conclusion 
 

In this paper, we have described a system for 
removing shadows from a single scene image, which is 
an intriguing but challenging problem. Unlike previous 
attempts on this area, we do not make much 
assumption on shadows; instead, we proposed a 
combined method to remove both vague and hard 
shadows in image. Working in the gradient domain, 
our system focuses on providing robust shadow edge 
estimation. The proposed method is remarkably robust 
and does not require any information of the shadow 
geometry. Though our current implementation of 
recovering images would introduce halos into images 
and the areas near the shadow edge would have 
artifacts, our shadow removal system still works well 
for both indoor and outdoor environments and can 
effectively remove vague and hard, cast and self 
shadows from a single scene image. 
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Figure 6. More examples for shadow removal: (a)(d)(h)(k) Original images with shadows. (b)(e)(i)(l) The 
Reconstructed shadow images based on our method. (c)(f)(j)(m) The recovered shadow free images. 
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